Programming Fundamentals
Using C++

Guidelines

1:\\1.11 Marks (o

: op
150
1 h&‘\\{__ 15

) N
factical, S0

Imorn\\l .\\’\L‘\\IHL‘H!' 25

kiuidclincx

Ref R :

v 0¢ .B Forouzan, Richard F, ¢
Sing C+4 edition, (

| Content

e
by
\

Pl’Of,lmmmin

g constructs, Basic data
types,

Constants ang variab
Control structur
Arithmetic angd
Assignment
Looping

les

es in conditionals,
logical expressions,

Functions

Strings and arrays, Command line
arguments,

File handling.

Abstraction and Encapsulati.on,
Procedural abstractiows, Objects and
-classes

Inheritance, polymorphism
Exception Handling

e
e

(H) Omputer Science (CRC
ramming Func

y)
lamentals using (¢

|

IbergComputer Scienc
~engage Learning, 2010.

Ch2(2.1-28)
Pg 26 -59

Ch 3 (3.1 t0 3.6) Pg 75-101,
37y

Ch 5 (5.1 to 5.3) Pg 175-205

Ch 6(6.1 t0 6.7)
Pg 227-260

Ch 4 (4.1 -4.4) (Pg 118- 147)

Ch 9 (9.1 to 9.9) Pg 412 — 434

Ch 14 (14.1 to 14.5) Pg 678 -
| Appendix L(Pg 955-958)
J“

|
| ch10 (10— Pg 48
| Ch 11 (11.1-11.5) Pg 54
|
|

Ch 12 (12.1 - 12.6)Pg 597
| Ch 15 (15.1-15.3)Pg 738

C++isa:

e Structured Programming Language
* High Level Language

e Case-Sensitive (In other words, uppercase and lowercase
letters are considered to be different)

 Strongly Typed

2.1 Background

In 1960, a hl(xk structured lan"uage mu"c(l wlnr h was <'1lled /\lh(“(;
J
(ALGOnthmic Language).

(n 1967, Martin Richards invented BCPIL. (Basic C ‘'ombined Pr0°rdmmmud,.

guage), which was a typeless language. It permitted only one data object (the
machine word).

1 1970, Ken Thompson invented the typeless system programming language |

ft

" . !
In 1972, working at Bell Laboratories. Dennis Ritchie designed C, a combina-

tion of BCPL and B but with data types.

In 1978, Brian Kemighan and Dennis Ritchic published the ad hoc standard for

traditional C

in 1980, Bjame Stroustrup extended C to include classes.

i

Stroustrup added virtual functions and overloading, the new lan- |
guage became known as C++. Since then it has continued to evolve. adding |
such features as multiple inheritance and abstract classes.

In 1985 after

1995, the American National Standards Institute (ANSD) and International

] : 2 T } ! ! 7 ry e ‘. 1 !
rtandards Organizaton ([S()) FCICASCU a w i N difail Ol their C++ standard.

In November 1997, the ANSI-ISO standard was approved.

2.2 A Sample Program

#include <iostream.h>
#include<conio.h>

using namespace std;

int main()

{

cout<<“Hello World”<<endl;
getch();

return O;

}

2.3 |dentifiers

* The first character must be alphabetic character or underscore.

* The identifier must consist only of alphabetic characters, digits, and
underscores.

* The identifier cannot duplicate a reserved word

2.4 Data Types

* Int (2 Bytes) [short, long, signed, unsigned(all positives)]

* l[ong int(4 bytes)

e By default, int is short(2 bytes)

* Signed Int has it’s range from (-32,768 to 32,767)

e Unsigned Int has it’s range from (0 to 65,535)

* Unsigned long int has it’s range from (0 to 2,147,483,647)

* Signed long int has it’s range from (-2147483648 to 2147483647)

e Char(1 Byte)

* Float(4 Bytes)

* Double(8 Bytes)

* Long double(10 Bytes)

* Bool(1 Byte)

* Void — This type has no values and no operations.

2.5 Variables

* Named memory locations that have a type are called as variables.
e Every variable has a data-type and an identifier(name).

* For e.g. int x;

* Each variable must be declared and defined.

e Declaration is used to name an object, such as a variable.

* Definitions are used to create the object.

* A variable is declared and defined the same time.

* Variable initialization (For e.g. int x=0;)

2.6 Constants/Literals

* Constants are data values that cannot be changed during the
execution of a program.

* There are two simple ways in C++ to define constants -

1. Using #define preprocessor/ Macros
2. Using const keyword.

* For e.g. const int length=5;

e LENGTH 1@
ine WIDTH

MELILIME

= LENGTH * WIDTH;
{{ area;
MEWLIMNE;
return @;

2.8 Reading and Writing Data

e A stream is an abstract representation of an input data source or
output data destination

e C++ automatically defines four standard streams called :
1. Console input (cin)
2. Console output(cout)
3. Console error(cerr)
4. Console log(clog)

* The difference between console error and console log is that console
log is buffered while the console error is unbuffered.

* A buffer is a temporary storage area that holds data while it is being
received or accumulated

2-8 Reading and Writing Data m

Data Source Program

WData it

— e —— ey

' .
teData’ S

INALOT

Figure Z2-1.1 tandard streams

Program 2-2 Print the sum . thre:

numben

-

#include <iostream

using name space sf

int main
{
cout "Welcome. This program adds\n
cout < "three numbers. Enter three number:
cout < "in the form: nnn nnn nnn <re
int
int
int
cin

26 Constants l:zll

int sum

cout << "\nThe total is: << Bum <«
cout << "\nThank you. Have a good day. zlcome. Thie program adds
SESEA T Enter three numbere

onn nnn nnn <return>

Yrogram Z2-4 Printing

#include <iostre

using namespace

int main ()

(

acout
cout
cout
cout

recurn

Hello

W Y P In this simple program, each piece of data is displayed on a
separate line. To make them come out on separate lines, we chained each data
value with the for the newline character | “). Had we not done that, all ¢f the

data would have appeared on one line, packed together with no spacing.

Program 2-5 Demonsiia dth manipulator

[l
i 1|l /7* Demonst

Y

#include <iostrean
#include <iomanip
using namespace

int main ()
int

float
char

2.8'Reading and Writing Data n

cout < ! « get width manipulato:

cout < I endl ;

cout . { ' << endl;
AL | no width" < eldd 0 .
\ | Py : rOOramnm « » nonstrate set \\'!\“tlHLHH“H!.”"‘

ontinued

cout << dl23

cout’ < setw(l 12
| : : | string width 10" <« endl ;

1) <« .Rt‘ll(‘-
\t | string width 3% <«

setw

setw(l) CchnA
N | width too small" << endl
setw(5) cdl23

getw(b5) << £123

setw(5) - cha

"\t | width 5 space each" << endl;

setw(10) < "Hello" '
emon set width manipulator

no width

width too small
width 5 space each
string width 10
string width 3

M to the C++ Languaqe«

Program 2-6

actey TH.H(Q")HI/‘,)

9 int main ()
10 {

i float amount

cout "Demonstra characters

cout setw(10) < amount

"\tAmount with space f£ill\n"

setw(10) < getfill('*') << amount

4 & |
o ‘ o
“"\tAmount with check protection fill\n'

setw(10) - setfll . << amount
"\tand again with s e £fill\n":

return 0;

H IS

e P ! o
KESU .. o

Demonstrate

123.45 Amount with space fill
*xkkx]123 45 Amount with C

123.45 and again with space £1i]]

heck protect

Integer Manipulators

* They are used to change the display format for the integer values.

* The decimal manipulator(dec) is the default, It tells the system to
print the value in decimal.

 Octal(oct) tells cout to print the value using the octal numbering
system.

* Hexadecimal(hex) tells cout to print in hexadecimal.

e Each of those manipulators sets the printing until it is reset by nother
manipulator.

7-8 R“J(“n(’ and Wrifing Data m

e

Program 2-7

‘monstrat

"Values decimal: \t»

setw(5) dl23 <

< Betw(5)

‘Values hexadecimal

nex;

15‘5","!(',\) << gpgetw(s
Values

cout. « oct;

#Hetw(h)

"Values

iecimal :
hexadecimal
ictald

in decimal

Floating point manipulators

* Fixed - This manipulator tells cout that floating point numbers are to
be displayed with fixed-point rather than floating-point numbers.

 Set precision — This manipulator is used to control the number of
decimal places to be displayed.

* Show Point — This manipulator displays the value with a decimal
point.

/* Demonstrat
- | Writctten
3 . Date:
-l‘ * /
>y-#include. .<iostream>
6| #include <iomanip>
7| using namespace st

'\; .

9!l int main—()
cout << "Demonst:

float

float
float

cout
cout
cout

fixed;
£1234
£12345678

cout
cout
cout
cout

cout
cout
cout
cout

getprecision(2);
e LPL T

£d. X<
£1234 <«
£123456789

ena.l

cout

£1234 << »

cout
getprecision(0)
ENENENE

<<

m\t\t\tWwith

end

setprecision added\n";

1

owp

twith

Z-8 Reading and Writing Data

_Program 2-8 cimonstrate tixed-point manipulators (continued)

With no manipulators

oA
. b) S

1.23457€4+06

000000 With fixed added
L.234000

| 2345677 . B¢

gsetprecision added

getprecision(0)
showpoint

"Initial values of the variables: \n";
AN N T A R 1 o 8 LIS) o I

Cc << endl;

endl;

4 + b/ 2 -c * b;
myalve ot a" "+ b"/ 2 = c * b is: "
X << endl;

--a * (3 +b) / 2 - c++ * b;
cout << "Value of --a * (3 +b) / 2 - c++ * b is: "
<< y << endl;

"\nValues of the variables are now: \n";
"a = " << a << " bi="" e DiF< s c=n"
c << endl;

return 0;

Initial values of the variables:
=3 = =5

Value of a * 4 + b/ 2 - c * b is: -6
value of --a * (3 + b) / 2 - c++ * b is: -13

Values of the variables are now:
= =6

#include <iostream>
using namespace std;

int main ()

{
char aChar =
int printChar;
int intNum
double fltNum

cout << "aChar contains : " << aChar << endl;
printChar = aChar;

cout << "aChar numeric : " << printChar << endl;
Cout << "intNum contains: " << intNum << endl;
cout << "fltNum contains: " << fltNum << endl;

intNum = intNum + aChar;
fltNum = fl1tNum + aChar;

cout << "\nAfter additions...\n";

printChar = aChar;

cout << "aChar numeric : " << printChar << endl;
cout << "intNum contains: " << intNum << endl;
cout << "fltNum contains: " << £f1ltNum << endl;
return 0;

NesSu

aChar contains : A
aChar numeric : 65
intNum contains:
fltNum contains:

After additions...

aChar numeric e5
intNum contains: 265 '
fltNum contains: 310.3°

Recursion

* When function is called within the same function, it is known as
recursion in C++.

e The function which calls the same function, is known as recursive
function.

int factorial(int N)
{
int product = 1;
for (int j=1; j<=N; j++)
product =product * j;
return product;

}

int main()

{

int num;

cout<<“Enter the number”;

cin>>num;

cout<<“Factorial of that number is”<<factorial(num);
return O;

}

int factorial(int n)
{
if (n==0)
return 1;
return (n*factorial(n-1));

}

int main()

{

int num;

cout<<“Enter the number”;

cin>>num;

cout<<“Factorial of that number is”<<factorial(num);
return O;

}

return 5 * factorial(4) =120

return 4 * factorial(3) = 24

return 3 * factorial(2) = 6

return 2 * factorial(1) = 2

return 1 * factorial(0) =1

1*2%3*%4%5=120

Fig: Recursion

Templates in C++

 Template is simple and yet very powerful tool in C++.

* The simple idea is to pass data type as a parameter so that we don’t
need to write same code for different data types.

* "typename " is a keyword in the C++ programming language used
when writing templates. It is used for specifying that a dependent
name in a template definition or declaration is a type.

#include <iostream.h>
// One function works for all data types.

template <typename T>
T myMax(T x, Ty)
{

return (x > y)? x: y;

}

int main()

{

cout << myMax<int>(3, 7) << endl; // Call myMax for int
cout << myMax<double>(3.0, 7.0) << endl; // call myMax for double
cout << myMax<char>('g', 'e') << endl; // call myMax for char

return O;

}

OOPs (Object Oriented Programming)

* Object Oriented programming is a programming style that is associated
with the concept of Class, Objects and various other concepts revolving
around these two, like Inheritance, Polymorphism, Abstraction,
Encapsulation etc.

Encapsulation

3

Polymorphism ¢——e OOPS e=——Pp Inheritance

3

Abstraction

* Data abstraction refers to, providing only essential information to the
outside world and hiding their background details, i.e., to represent the
needed information in program without presenting the details.

* Encapsulation is placing the data and the functions that work on that
data in the same place.

* One of the most useful aspects of object-oriented programming is code
reusability. As the name suggests Inheritance is the process of forming
a new class from an existing class that is from the existing class called as
base class, new class is formed called as derived class.

* Poly refers to many. That is a single function or an operator functioning
in many ways different upon the usage is called polymorphism.

C++ Classes and Objects

* The building block of C++ that leads to Object Oriented programming
is a Class.

* It is a user defined data type, which holds its own data members and
member functions, which can be accessed and used by creating an
instance of that class.

* An Object is an instance of a Class. When a class is defined, no
memory is allocated but when it is instantiated (i.e. an object is
created) memory is allocated.

Defining Class and Declaring Objects

A class is defined in C++ using keyword class followed by the name of class. The body of class is

defined inside the curly brackets and terminated by a semicolon at the end.

keyword user-defined name

class ClassName

{ Access specifier: /fcan be private,public or protected

Data members; [/ Variables to be used

Member Functions() {} //Methods to access data members

// Class name ends with a semicolon

using namespace std;
class Geeks

{

5

// Access specifier
public:

// Data Members
string geekname;

// Member Functions()
void printname()

{

cout << "Geekname is: " << geekname;

)

int main() {

// Declare an object of class
geeks
Geeks obj1;

// accessing data member
objl.geekname = "Abhi";

// accessing member

function
objl.printname();
return O;

}

Member Functions in Classes

There are 2 ways to define a member function:
* Inside class definition
* Qutside class definition

To define a member function outside the class definition we have to

use the scope resolution :: operator along with class name and function
name

using namespace std;
class Geeks

{
public:

string geekname;
int id;

// printname is not defined inside class defination
void printname();

// printid is defined inside class defination
void printid()
{

cout << "Geek id is: " << id;

}
5

// Definition of printhame using scope resolution operator ::
void Geeks::printname()

{

cout << "Geekname is: " << geekname;

}

int main() {

Geeks objl;
objl.geekname = "xyz";
objl.id=15;

// call printname()
objl.printname();
cout << endl;

// call printid()
objl.printid();
return O; }

Constructors

* Constructors are special class members which are called by the
compiler every time an object of that class is instantiated.

Constructors have the same name as the class and may be defined
inside or outside the class definition.

There are 3 types of constructors:
* Default constructors

* Parametrized constructors

* Copy constructors

using namespace std;
class Geeks

{
public:

int main() {

// obj1 will call Default Constructor
int id; Geeks obj1;

cout << "Geek id is: " <<objl.id << endl;
//Default Constructor

Geeks() // obj1 will call Parametrized Constructor
Geeks obj2(21);
{ cout << "Geek id is: " <<0bj2.id << endl;
cout << "Default Constructor called" << end|; return 0:
id=-1; }
}

//Parametrized Constructor
Geeks(int x)

{

cout << "Parametrized Constructor called" << end]; Default Constructor called

id=x; Geek id is: -1
} Parametrized Constructor called
}: Geek id is: 21

Copy Constructor

* A Copy Constructor creates a new object, which is exact copy of the
existing copy. The compiler provides a default Copy Constructor to all
the classes.

* Syntax:
class-name (class-name &)
{
}

Destructors

* Destructor is another special member function that is called by the
compiler when the scope of the object ends.

e Destructors have same name as the class preceded by a tilde (~).

* There can only one destructor in a class with classname preceded by
~, no parameters and no return type.

e Destructors don’t take any argument and don’t return anything

Class Access Modifiers &

A class member can be defined as public, private or protected. By
default members would be assumed as private,

Constructor & Destructor &

A class constructor is a special function in a class that is called when

a new object of the class is created. A destructor is also a special
function which is called when created object is deleted.

Copy Constructor &/

The copy constructor is a constructor which creates an object by

initializing it with an object of the same class, which has been
created previously.

Friend Functions

A friend function is permitted full access to private and protected
members of a class.

Inline Functions

With an inline function, the compiler tries to expand the code in the
body of the function in place of a call to the function.

