
Programming Fundamentals 
Using C++ 



Guidelines 



C++ is a : 

 

• Structured Programming Language 

• High Level Language 

• Case-Sensitive (In other words, uppercase and lowercase 
letters are considered to be different) 

• Strongly Typed  

 

 



2.1 Background 



2.2  A Sample Program 

#include <iostream.h> 

#include<conio.h> 

using namespace std; 

int main() 

{ 

cout<<“Hello World”<<endl; 

getch(); 

return 0; 

} 

 

 



2.3 Identifiers 

• The first character must be alphabetic character or underscore. 

• The identifier must consist only of alphabetic characters, digits, and 
underscores. 

• The identifier cannot duplicate a reserved word 



2.4 Data Types 

• Int (2 Bytes) [ short, long, signed, unsigned(all positives)] 

• long int(4 bytes) 

• By default, int is short(2 bytes) 

• Signed Int has it’s range from (-32,768 to 32,767) 

• Unsigned Int has it’s range from ( 0 to 65,535) 

• Unsigned long int has it’s range from (0 to 2,147,483,647) 

• Signed long int has it’s range from (-2147483648 to 2147483647) 



• Char(1 Byte) 

• Float(4 Bytes) 

• Double(8 Bytes) 

• Long double(10 Bytes) 

• Bool(1 Byte) 

• Void – This type has no values and no operations. 

 



2.5 Variables 

• Named memory locations that have a type are called as variables. 

• Every variable has a data-type and an identifier(name). 

• For e.g. int x; 

• Each variable must be declared and defined. 

• Declaration is used to name an object, such as a variable. 

• Definitions are used to create the object. 

• A variable is declared and defined the same time. 

• Variable initialization ( For e.g. int x=0; ) 



2.6 Constants/Literals 

• Constants are data values that cannot be changed during the 
execution of a program. 

• There are two simple ways in C++ to define constants − 
1. Using #define preprocessor/ Macros 

2. Using const keyword. 

• For e.g. const int length=5; 



2.7 Coding Constants 



2.8 Reading and Writing Data 

• A stream is an abstract representation of an input data source or 
output data destination 

• C++ automatically defines four standard streams called : 
1. Console input (cin) 
2. Console output(cout) 
3. Console error(cerr) 
4. Console log(clog) 

• The difference between console error and console log is that console 
log is buffered while the console error is unbuffered. 

• A buffer is a temporary storage area that holds data while it is being 
received or accumulated  













Integer Manipulators 

• They are used to change the display format for the integer values. 

• The decimal manipulator(dec) is the default, It tells the system to 
print the value in decimal. 

• Octal(oct) tells cout to print the value using the octal numbering 
system. 

• Hexadecimal(hex) tells cout to print in hexadecimal. 

• Each of those manipulators sets the printing until it is reset by nother 
manipulator. 

 





Floating point manipulators 

• Fixed - This manipulator tells cout that floating point numbers are to 
be displayed with fixed-point rather than floating-point numbers. 

 

• Set precision – This manipulator is used to control the number of 
decimal places to be displayed. 

 

• Show Point – This manipulator displays the value with a decimal 
point. 











Recursion 

• When function is called within the same function, it is known as 
recursion in C++.  

• The function which calls the same function, is known as recursive 
function. 

 



int factorial( int N ) 
{ 
  int product = 1; 
  for ( int j=1; j<=N; j++ ) 
    product =product * j; 
  return product; 
} 
int main() 
{ 
int num; 
cout<<“Enter the number”; 
cin>>num; 
cout<<“Factorial of that number is”<<factorial(num); 
return 0; 
} 
 



int factorial(int n) 

{ 

    if (n == 0) 

      return 1; 

    return (n*factorial(n-1)); 

} 

int main() 

{ 

int num; 

cout<<“Enter the number”; 

cin>>num; 

cout<<“Factorial of that number is”<<factorial(num); 

return 0; 

} 

 

 





Templates in C++ 
 
• Template is simple and yet very powerful tool in C++.  

• The simple idea is to pass data type as a parameter so that we don’t 
need to write same code for different data types. 

• " typename " is a keyword in the C++ programming language used 
when writing templates. It is used for specifying that a dependent 
name in a template definition or declaration is a type. 



#include <iostream.h> 

  

// One function works for all data types.  

 

template <typename T> 

T myMax(T x, T y) 

{ 

   return (x > y)? x: y; 

} 

int main() 

{ 

  cout << myMax<int>(3, 7) << endl;  // Call myMax for int 

  cout << myMax<double>(3.0, 7.0) << endl; // call myMax for double 

  cout << myMax<char>('g', 'e') << endl;   // call myMax for char 

  

  return 0; 

} 

 



OOPs (Object Oriented Programming) 

• Object Oriented programming is a programming style that is associated 
with the concept of Class, Objects and various other concepts revolving 
around these two, like Inheritance, Polymorphism, Abstraction, 
Encapsulation etc. 
 



• Data abstraction refers to, providing only essential information to the 
outside world and hiding their background details, i.e., to represent the 
needed information in program without presenting the details. 

• Encapsulation is placing the data and the functions that work on that 
data in the same place. 

• One of the most useful aspects of object-oriented programming is code 
reusability. As the name suggests Inheritance is the process of forming 
a new class from an existing class that is from the existing class called as 
base class, new class is formed called as derived class. 

• Poly refers to many. That is a single function or an operator functioning 
in many ways different upon the usage is called polymorphism. 



C++ Classes and Objects 

• The building block of C++ that leads to Object Oriented programming 
is a Class.  

• It is a user defined data type, which holds its own data members and 
member functions, which can be accessed and used by creating an 
instance of that class.  

• An Object is an instance of a Class. When a class is defined, no 
memory is allocated but when it is instantiated (i.e. an object is 
created) memory is allocated. 





using namespace std;  

class Geeks  

{  

    // Access specifier  

    public:  

   

    // Data Members  

    string geekname;  

   

    // Member Functions()  

    void printname()  

    {  

       cout << "Geekname is: " << geekname;  

    }  

};  

   

int main() {  
   
    // Declare an object of class 
geeks  
    Geeks obj1;  
   
    // accessing data member  
    obj1.geekname = "Abhi";  
   
    // accessing member 
function  
    obj1.printname();  
    return 0;  
}  
 



Member Functions in Classes 

There are 2 ways to define a member function: 

• Inside class definition 

• Outside class definition 

To define a member function outside the class definition we have to 
use the scope resolution :: operator along with class name and function 
name 

 



using namespace std;  

class Geeks  

{  

    public:  

    string geekname;  

    int id;  

       

    // printname is not defined inside class defination  

    void printname();  

       

    // printid is defined inside class defination  

    void printid()  

    {  

        cout << "Geek id is: " << id;  

    }  

};  

   



// Definition of printname using scope resolution operator ::  

void Geeks::printname()  

{  

    cout << "Geekname is: " << geekname;   

}  

int main() {  

       

    Geeks obj1;  

    obj1.geekname = "xyz";  

    obj1.id=15;  

       

    // call printname()  

    obj1.printname();  

    cout << endl;  

       

    // call printid()  

    obj1.printid();  

    return 0; } 

 



Constructors 

• Constructors are special class members which are called by the 
compiler every time an object of that class is instantiated. 
Constructors have the same name as the class and may be defined 
inside or outside the class definition. 

 
There are 3 types of constructors: 

• Default constructors 

• Parametrized constructors 

• Copy constructors 

 



using namespace std;  

class Geeks  

{  

    public:  

    int id;  

       

    //Default Constructor  

    Geeks()  

    {  

        cout << "Default Constructor called" << endl;   

        id=-1;  

    }  

       

    //Parametrized Constructor  

    Geeks(int x)  

    {  

        cout << "Parametrized Constructor called" << endl;  

        id=x;  

    }  

};  

int main() {  
       
    // obj1 will call Default Constructor  
    Geeks obj1;  
    cout << "Geek id is: " <<obj1.id << endl;  
       
    // obj1 will call Parametrized Constructor  
    Geeks obj2(21);  
    cout << "Geek id is: " <<obj2.id << endl;  
    return 0;  
}  

Default Constructor called 
Geek id is: -1 
Parametrized Constructor called 
Geek id is: 21 



Copy Constructor 

• A Copy Constructor creates a new object, which is exact copy of the 
existing copy. The compiler provides a default Copy Constructor to all 
the classes. 

• Syntax: 

        class-name (class-name &)        

         { 

         } 



Destructors 

• Destructor is another special member function that is called by the 
compiler when the scope of the object ends. 

• Destructors have same name as the class preceded by a tilde (~). 

• There can only one destructor in a class with classname preceded by 
~, no parameters and no return type. 

• Destructors don’t take any argument and don’t return anything 




